Octupole signatures in 124,125Ba

P Mason1, G Benzoni1, A Bracco1, F Camera1, B Million1, O Wieland1, S Leoni1, A K Singh1,21, A Al-Khatib2, H Hüb3, P Bringel2, A Bürger2, A Neusser2, G Schönwasser2, G B Hagemann3, C R Hansen3, B Herskind3, G Sletten3, A Algora4, Zs Dombrádi4, J Gál4, G Kalinka4, J Molnár4, B M Nyakó4, D Sohler4, J Timár4, L Zolnai4, M Kmiecik5, A Maj5, J Styczyn5, K Zuber5, F Azaiez6, K Hauschild6, A Korič6, A Lopez-Martens6, J Rocca6, S Siem6, F Hannachi6, J N Scheurer7, P Bednarczyk1,22, Th Byrski8, D Curien8, O Dorvaux8, G Duchêne8, B Galf8, F Khaiballah8, I Piqueras8, J Robin8, K Juhász9, S B Patel10, A O Evans8, G Rainovski11, C M Petrov12, D Petrov12, G La Rana13, R Moro11, G De Angelis14, P Fallon15, I-Y Lee15, J C Lisle16, B Cederwall17, K Lagergren17, R M Lieder18, E Podsvirova18, W Gast18, H Jäger18, N Redon19 and A Görgen20

1 Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Italy
2 Helmholtz-Institut für Strahlen-und Kernphysik, Universität Bonn, Germany
3 Niels Bohr Institute, Copenhagen, Denmark
4 Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Hungary
5 Niewodniczański Institute of Nuclear Physics, PAN, Kraków, Poland
6 CSNSM Orsay, IN2P3/CNRS, Orsay, France
7 Centre d’Études Nucléaires de Bordeaux-Gradignan, Gradignan, France
8 Institut de Recherches Subatomiques, CNRS-IN2P3, Strasbourg, France
9 Faculty of Informatics, University of Debrecen, Hungary
10 Department of Physics, University of Bombay, Mumbai, India
11 Oliver Lodge Laboratory, University of Liverpool, UK
12 INFN and Dipartimento di Fisica, Università di Camerino, Italy
13 Physical Science Department and INFN, Napoli, Italy
14 INFN, Laboratori Nazionali di Legnaro, Italy
15 Lawrence Berkeley Laboratory, Berkeley, USA
16 Schuster Laboratory, University of Manchester, UK
17 Department of Physics, Royal Institute of Technology, Stockholm, Sweden
18 Institut für Kernphysik, Forschungszentrum Jülich, Germany
19 IPN Lyon, IN2P3/CNRS, Université Lyon-1, Villeurbanne, France
20 DAPNIA/SpbN, CEA-Saclay, Gif-sur-Yvette, France

Received 17 March 2005
Published 12 September 2005
Online at stacks.iop.org/JPhysG/31/S1729

Abstract
The γ decay of the nuclei 124,125Ba has been investigated with the EUROBALL array, using the reaction 64Ni+64Ni at $E_{\text{beam}} = 255$ and 261 MeV. Six new E1 transitions have been found in the nucleus 125Ba, suggesting a significant role of octupole correlations in the origin of its parity doublets. The $J^π = 3^-$ level

21 Present address: Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur, India.
22 Present address: Gesellschaft für Schwerionenforschung, Darmstadt, Germany.
of the nucleus 124Ba has been identified for the first time. Its excitation energy is in very good agreement with a prediction based on a microscopic model including octupole interactions.

Experimental fingerprints of octupole correlations, such as alternate-parity bands linked by enhanced E1 transitions, very collective E3 transitions and parity doublets in odd nuclei, are long established in the proximity of both the double octupole ‘shell closures’ $Z = 56, N = 88$ (corresponding to the nucleus 144Ba, see [1]) and $Z = 56, N = 56$ (corresponding to the so far unidentif—-and perhaps unbound—nucleus 112Ba, see for example [2]). In even light barium isotopes ($118 \leq A \leq 130$), the existence of low-lying negative-parity even-spin states is at variance with the symmetry properties of octupole correlations. Nevertheless, in these nuclei the lowest observed negative-parity states lie systematically below the threshold represented by twice the proton pairing gap [3], and in a work by Piepenbring and Leandri [4] it was argued that the inclusion of an octupole–octupole force is indeed necessary in a microscopic description of low-lying negative-parity states in 124,126Ba. The excitation energies of the lowest-lying unidentified levels, stated to provide a stringent test of the model, were also calculated [4]. In particular, the $J^\pi = 3^-$ level in 124Ba was predicted to have the excitation energy of 1700 keV.

The experimental results presented in this work were obtained through the analysis of double and triple γ transitions collected by the EUROBALL spectrometer [5, 6] in a thin-target experiment performed at IReS Strasbourg (France) and primarily aimed at the search for hyperdeformed bands in the nucleus 126Ba using the reaction 64Ni+64Ni@255–261 MeV [7]. (The DIAMANT array of charged-particle detectors [8] was also used for the purpose of channel selection.) Our analysis involved the measurement of the degree of linear polarization of γ rays, performed by means of the composite CLOVER detectors. These four-crystal detectors allowed us to measure the Compton-scattering asymmetry $A_{CS} \equiv (N_\perp - N_\parallel)/(N_\perp + N_\parallel)$, where N_\perp and N_\parallel denote the number of photons scattered in the orthogonal and parallel direction respectively, relative to the beam direction. This quantity is proportional to the actual degree of linear polarization P of γ rays at $\theta_{\text{CLOVER}} \approx 90^\circ$ through the polarimeter’s sensitivity $Q = A_{CS}/P$.

The first experimental result we report is the identification of six new E1 transitions linking the yrast positive-parity and negative-parity bands in the nucleus 125Ba. This nuclide displays parity doublets, i.e. its yrast levels having the same angular momentum but opposite parity are very close in energy. In fact, the quadratic average of the difference between the excitation energies of J^+ and J^- levels in this nucleus corresponds to 335 keV (see level scheme in [9]), while in 143Ba (see [10]), for instance, it corresponds to 453 keV. Unlike 143Ba, however, only three E1 transitions were known to connect opposite-parity levels in 125Ba prior to our work [9, 11]. We clinched the $\Delta J = 1$ electric dipole character of one of them, namely the $23/2^+ \rightarrow 21/2^-$ transition, through the measurement of its angular distribution (see figures 1(b) and 2) and its linear polarization, which was found to be $P = +0.2(2)$. The measurement of branching ratios, moreover, allowed us to deduce the $B(E1)/B(E2)$ ratio for the $23/2^+$ level. The value we found is $1.8(3) \times 10^{-7}$ fm$^{-2}$, which has the same order of magnitude as some values measured in 143,145Ba [10]. Finally, we found evidence for five new E1 transitions linking the positive-parity and negative-parity structures, as shown in figure 1(a). (A further tentative transition, linking the $27/2^+$ and $25/2^-$ states, has been observed.) It is now evident that basically all the levels below the excitation energy of ~ 3 MeV are connected through electric dipole transitions to levels of opposite parity (see figure 2), hinting at a significant role of octupole correlations in the origin of the parity doublets displayed by 125Ba.
Octupole signatures in 124,125Ba

Figure 1. (a) Section of a single-gate spectrum showing five of the six new E1 transitions identified in 125Ba. (b) The angular distribution of the $E_{\gamma} = 777$ keV transition linking the $23/2^+$ and $21/2^-$ levels in 125Ba. The fitting curve corresponds, besides a normalization factor, to the function $1 + A_2 P_2(\cos(\theta)) + A_4 P_4(\cos(\theta))$, where P_n is the nth Legendre polynomial. The best-fit values of Legendre polynomial coefficients are reported in the figure.

Figure 2. Partial level scheme for 125Ba including the new E1 transitions connecting the positive-parity yrast structure (i.e. the coupled bands on the left-hand side of the picture) with the negative-parity one (right-hand side). Thick arrows indicate newly-found transitions. Previously known levels and transitions are taken from [9].

and, possibly, also of the parity doublets that are indeed observed in all odd barium isotopes with $119 \leq A \leq 129$ [3]. In particular, 127Ba is also known to exhibit a large number of E1 transitions linking opposite-parity bands [12].

The second experimental result we present is the identification of the $J^T = 3^-$ level in 124Ba. As shown in figure 3, two new coincident transitions of energy $E_{\gamma} = 312$ and 1492 keV, respectively, are observed following the $8^- \rightarrow 6^-$, $E_{\gamma} = 345$ keV and $6^- \rightarrow 4^-$, $E_{\gamma} = 326$ keV transitions (see level scheme in [13]). The $\Delta J = 1, \delta \approx 0$ dipole(+$quadrupole$) character of the new $E_{\gamma} = 312$ keV transition was determined on the basis of its angular distribution. The E1/M1 ambiguity was solved through the measurement of the transition’s degree of linear polarization. In this case we performed a simple integration of the
parallel- and orthogonal-scattering spectra, in the interval containing the $E_γ = 312$ keV peak and in two peak-free intervals close to it. A value $A_{CS} = -0.015(28)$ was found to correspond to the first interval, while the scattering asymmetry of the background surrounding the peak turned out to be $A_{CS} = +0.06(3)$. This means that the degree of linear polarization of the $E_γ = 312$ keV transition is negative, exactly as expected in the case of a $\Delta J = 1$ M1(+E2) character with $\delta \approx 0$. The level fed by this transition and decaying through the $E_γ = 1492$ keV transition to the 2^+ state, therefore, has $J^\pi = 3^-$; its excitation energy, namely $E_{exc}(3^-) = 1722$ keV, is in very good agreement with the prediction $E_{th}(3^-) = 1700$ keV given in [4]. Our work, thus, provides new evidence supporting the conclusion drawn in [4] that, in order to reproduce the excitation energies of low-lying negative-parity states in 124,126Ba, octupole interactions must indeed be considered.

In conclusion, we have presented new evidence for the existence of octupole correlations in light barium isotopes. The $J^\pi = 3^-$ level in 124Ba was identified, at an energy well reproduced by a microscopic model including an octupole–octupole force. In addition, the existence of several new E1 transitions in the nucleus 125Ba, linking opposite-parity structures whose levels form closely-spaced parity doublets, was established.

Future work on this subject should include the determination of the strength of these correlations through the measurement of $B(E1)$ values. No such measurement has ever been performed in light barium isotopes but, on the basis of experimental branching ratios and TRS calculations, $B(E1)$ values which are comparable in size to those observed for instance in 114Xe [2] were argued in the nucleus 118Ba [14]. The observation of low-lying negative-parity states in 114,116Ba (only the ground states of these nuclei have been hitherto identified [3]) would also be of great interest.

Acknowledgments

We are indebted to the EUROBALL supporting group for running the instrument. Thanks are due to the technical crew of the VIVITRON accelerator. This work was supported in part by the EU contract no HPRI-CT-1999-00078, and by the Hungarian Scientific Research Fund OTKA (contract numbers T046901 and T038404) and the Bolyai János Foundation of HAS.

References

Octupole signatures in 124,125Ba